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Abstract In this paper, we analyze a structure of the basis

set optimized effective potential (OEP) equations from the

Fredholm alternative point of view and present one of pos-

sible numerical schemes to solve the OEP equation in a stable

manner. The solution is constructed as a sum of a unique

solution on the subspace of eigenfunctions of the response

matrix with non-zero eigenvalues and a non-unique solution

on a counterpart subspace with singular eigenvalues. Non-

uniqueness of a solution is exploited to obtain a local

effective potential that satisfies the condition for the highest

occupied molecular orbital (HOMO) without restricting the

variational freedom of the optimization procedure. Unlike

the existing methods we implement the HOMO condition

using the functions of the null-subspace. Numerical results

for the total and orbital energies based on the proposed

scheme are close to the corresponding literature data.

Keywords Optimized effective potential �
Fredholm alternative � Basis set optimization

1 Introduction

A local exchange potential was originally proposed by

Slater [1] to simplify the Hartree–Fock equations. This idea

has been developed to the optimized effective potential

(OEP) based methods [2, 3] which are considered to be a

promising technique for constructing local potentials of

density functional theory (DFT) [4, 5] in its orbital-

dependent implementation. In addition, the exchange-only

OEP (xOEP) can be partitioned into the Slater potential and

a response correction part (e.g., [6, 7]).

It is known that in the xOEP method, one seeks for a

local potential Veff(r) such that the eigenfunctions /i(r) of

the one-particle Schrödinger equation [the Kohn–Sham

(KS) equation]
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is the electron density and Ex[{/i

s}] is the

orbital-dependent exchange HF energy.

This definition leads to the OEP integral equation which

can also be obtained using a perturbation theory along the

adiabatic connection between the non-interacting model

system and the real many-electron system [8]. In particular

the xOEP equation may be written in the form:
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where Fs is the Fock operator based on the OEP orbitals.

V. N. Glushkov (&) � S. I. Fesenko

Department of Physics, Electronics and Computer Systems,

National University of Dnepropetrovsk,

per Nauchny 13, 49050 Dnepropetrovsk, Ukraine

e-mail: v_n_glushkov@yahoo.com

H. M. Polatoglou

Department of Physics, Aristotle University of Thessaloniki,

54124 Thessaloniki, Greece

e-mail: hariton@physics.auth.gr

123

Theor Chem Acc (2009) 124:365–376

DOI 10.1007/s00214-009-0624-y



Although a large number of practical calculations has

been carried out based on this methodology, the solution of

the OEP equations is not straightforward (e.g., [9–14] and

references therein). Numerical grid techniques have been

proposed to solve the OEP equations [3], but this had been

feasible only for atomic systems. For molecules practical

solutions of the KS equation (1) and the OEP equation (3)

are based on a finite basis set implementation. An orbital

basis set is used to represent the orbitals /i(r) and an

auxiliary basis set is needed to expand the local effective

potential Veff(r).

As pointed out in Ref. [14], it is difficult to give mathe-

matical formulation of the (infinite dimensional) OEP

optimization problem, and also to build consistent finite

dimensional approximations of the OEP problem. On the

one hand, for a fixed auxiliary basis and in the limit of a

complete orbital basis set the response matrix has no

eigenvalues equal to zero except the trivial one belonging

to a constant function. In this case the OEP problem is

well-defined and the HF energy must be lower than OEP

one [15]. On the other hand, for any finite orbital basis set

with increasing an auxiliary basis set one obtains more and

more eigenvalues with too small magnitude and the OEP

equations become ill-conditioned. It was demonstrated

[13], in particular, that this may lead to: (1) the collapse of

the unconstrained exchange-only search to the corre-

sponding HF solution and (2) the existence of infinitely

many multiplicative exchange potentials. In addition the

basis set OEPs are characterized by unphysical oscillations

around the nuclei.

Considerable efforts have been expended to understand

the cause of the problem (e.g., [16–24] and reference

therein). A detailed analysis of the mathematical proper-

ties of various local approximations to the nonlocal HF

exchange operator is given in [14]. Gorling et al. [16]

showed that the HF ground state energy can be only

obtained via a finite basis set xOEP scheme in the case

that all products of occupied and unoccupied orbitals

emerging from employed orbital basis set are linearly

independent of each other. When the products are linearly

dependent the OEP energy is greater than the HF one. The

problem of non-uniqueness seems to be more difficult. In

fact, for any finite orbital basis set we are no longer

dealing with the original response operator but only with

its part on a finite subspace spanned by a basis set con-

sisting of the orbital products (some discussion of the

effects of the truncation can be found in [19]). Therefore,

if an auxiliary subspace does not coincide with the space

spanned by the orbital products we shall deal with an ill-

posed problem and a non-unique solution. When the

number of basis functions goes to infinity, in general, it is

difficult to prove that the solution of the finite-dimen-

sional problem converges to a solution of the original

OEP problem. It is easier to devise mathematical regu-

larization procedures to remedy singularities. The corre-

sponding OEP problems were discussed at various places

in the literature. Several methods for generating local

exchange potential in a numerically stable manner have

been proposed. Some of them use the OEP based tech-

niques [17, 20, 23–27]. Other approaches develop an

alternative non-OEP based methodology [28–30]. It was

established that numerical stability can be achieved if the

auxiliary basis set is carefully balanced for a given orbital

basis set. As a rule, basis non-linear parameters adjusted

for an orbital basis set are employed to construct auxiliary

basis sets.

In this paper, we analyze the structure and a solvability

condition of the basis set xOEP equations from the Fred-

holm alternative point of view and present one of possible

numerically stable schemes to solve the OEP equation. The

solution is constructed as a sum of a unique solution on the

subspace of eigenfunctions of the response matrix with

non-zero eigenvalues and a solution on a counterpart sub-

space of eigenfunctions with singular eigenvalues. In

addition, a general solution depends on arbitrary constants.

In our implementation the non-uniqueness has been partly

fixed by imposing restrictions that must be satisfied by the

exact OEP, in particular, we have examined the condition

for the highest occupied molecular orbital (HOMO) using

the functions of the null-subspace. Opportunities to achieve

a balancing of the orbital and auxiliary basis set were

investigated using a simple reoptimization of the exponents

for auxiliary functions.

The paper is organized as follows: a general outline of

the basis set OEP equation is considered in Sect. 2, where

we derive optimization equations for non-linear orbital and

auxiliary basis set parameters and show that orbital basis

set equations are similar to those of the HF method. In Sect.

3 an operator form of the xOEP equations is presented and

their analysis based on the Fredholm alternative is given. In

Sect. 4 we discuss an algorithm and numerical results for

the Be atom and several test diatomic molecules. Finally,

Sect. 5 contains our concluding remarks.

2 Optimization equations for orbital and auxiliary

basis sets

Below we shall derive the xOEP equations determining the

parameterized effective potential Veff(r) expressed in terms

of an auxiliary basis functions fkðrÞ; k ¼ 1; 2; . . .;Maux;

which, in general, can depend on a set of non-linear vari-

ational parameters {am}

VeffðrÞ ¼ V0ðrÞ þ
XMaux

m¼1

bmfmðrÞ ð4Þ
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The effective potential is written as the sum of a refer-

ence potential V0(r) and a remainder which is expanded in

terms of the auxiliary basis set.

For the reference potential, rather than the Fermi–

Amaldi potential obtained in the local density approxima-

tion [31] or the self-consistent Slater potential [11], we

choose an analytical potential proposed in Refs. [32, 33]

for atoms and in Refs. [34–36] for molecules, where V0(r)

is expressed as a direct mapping of the external potential

Vext(r). For molecules, the expansion is

V0ðrÞ ¼ �
X

k

Zk

jr� Rkj

þ N � 1

Z
C
X

k

Zk
1� expð�dkjr� RkjÞ

jr� Rkj
ð5Þ

where Z ¼
P

k Zk and summations in Eq. 5 are over the

nuclei.

This representation provides correct asymptotic beha-

vior for Veff(r) and has proven to be useful for the ground

and excited state DFT calculations of atoms and simple

molecules [34–38].

In our implementation before using the potential Eq. 4,

first we solve the KS equations with the reference potential

V0 alone, in order to determine the variational parameters C

and dk in Eq. 5 by minimizing EOEP and subsequently we

fix V0(r) (in practice these parameters were taken from

[36]). This procedure makes it possible to get a spectrum of

the response matrix with a good accuracy. Then the coef-

ficients bm are varied to minimize the OEP energy.

As mentioned, in practice for the solutions of Eq. 1, one

applies the finite basis set implementation, i.e., the solu-

tions are sought by expanding the orbitals /i in terms of a

finite orbital set of basis functions vp, ðp ¼ 1; 2; . . .;MorbÞ;
i.e.,

/ij i ¼
XMorb

p¼1

aip vp

�� �
¼ P /ij i ð6Þ

where P is the orthoprojector onto the finite-dimensional

subspace determined by the chosen basis set, i.e.,

P ¼
XMorb

p;q

vp

�� �
ðS�1

pq Þ vq

� �� ¼
XMorb

p

vp

�� �
ðvpj; ð7Þ

where S is the overlap matrix with elements hvpjvqi and

S�1 is its inverse. The vectors ðvpj ¼
PMorb

q S�1
pq vq

� ��; ðp ¼
1; 2; . . .;MorbÞ; form an orbital basis set biorthogonal to the

origin one so that ðvpjvqi ¼ dpq: Here dpq is the Kronecker

symbol.

Thus, the solution of Eq. 1 is replaced by the solution of

the equation

PðHeff � eiÞPj/ii ¼ 0; ð8Þ

where

Heff ¼ �
1

2
r2 þ VeffðrÞ ð9Þ

For simplicity, the formalism described will be considered

in the case of a closed-shell system with a non-degenerate

ground state. The Hamiltonian of a system with N electrons

has the standard form

H ¼ � 1

2

XN

i¼1

r2
i �

XN

i¼1

Xnuclei

k

Zk

jri � Rkj
þ 1

2

XN

i6¼j

1

jri � rjj

ð10Þ

The expectation value (total energy in the xOEP method)

E ¼ Uh jH Uj i; UjUh i ¼ 1; of the Hamiltonian H with

a Slater determinant U constructed from spin–orbitals

(Eq. 8) becomes a functional of such a potential, i.e.,

E = E[{/i};Veff] and the effective potential is varied to

minimize the total energy. We start from the stationary

condition

dE½f/ig; Veff � ¼ dhUjHjUi ¼ 0 ð11Þ

The transformation of (Eq. 11) from a many-particle

expression to the one-particle orbitals yields

dE ¼
Xocc

i

hd/ijðI � PNÞFj/ii þ c.c. ¼ 0 ð12Þ

where I is identity and PN ¼
Pocc

i j/iih/ij is the ortho-

projector on the subspace of occupied orbitals. The Fock

operator F is based on orbitals of Eq. 8. The explicit form

of this operator depends on the occupation scheme of the

shells.

Taking Eq. 6 into account the variations of the orbitals

can be divided into the following parts

jd/ii ¼ PN jd/ii þ ðP� PNÞjd/ii þ
X

a

ðoaPÞj/iidca;

ð13Þ

Here, ca, a ¼ 1; 2; . . .; norb; represents the orbital basis set

parameters (the orbital exponents and the positions, i.e., we

assume that basis functions can be distributed along a

molecular axis) and oaP � oP
oca

are the derivatives of the

projection operator P with respect to the basis set para-

meters. The first term in Eq. 13 does not lead to any change in

the total energy because it is invariant under any orthogonal

transformation of the occupied orbitals among themselves.

The second term corresponds to variations within the finite-

dimensional subspace spanned by the chosen orbital basis

set, whereas the last term allows this subspace to be rotated

within the Hilbert space of one-particle states to attain the

deeper minimum with respect to the total energy.

Substituting Eq. 13 in Eq. 12 and taking into account the

independence of the variations expressed by the second and
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third terms in Eq. 13 and also arbitrariness of ca we obtain

the following equations:

Xocc

i

hd/ijðP� PNÞFj/ii þ c.c. ¼ 0 ð14Þ

and

Xocc

i

h/ijðoaPÞFj/ii þ c.c. ¼ 0; a ¼ 1; 2; . . .; norb ð15Þ

Equation 15 are optimization equations for non-linear

parameters (exponents and positions) of an orbital basis set.

It is useful to note that these equations in their present form

coincide with the basis set optimization equations for the

HF method [39, 40]. Hence, a basis set optimized for the

HF orbitals is a good approximation for the OEP orbitals

and vice versa. The left side of the Eq. 15 presents gradient

components of EOEP with respect to the orbital basis set

parameters and can be used to construct minimization

procedures.

Let us now examine Eq.14. Unlike the HF equations the

variations ðP� PNÞjd/ii in Eq. 14 are not arbitrary,

because they are restricted by Eq. 8 and should be deter-

mined by the equation:

PðHeff � eiÞPjd/ii ¼ �P½dðVeffðrÞ � eiÞ�Pj/ii; ð16Þ

Then after some transformations we get

Xocc

i

Xvirt

a

h/ij½dVeff �j/aih/ajðVHF � VeffÞj/ii
ei � ea

þ c:c: ¼ 0

ð17Þ

where summations are over spin–orbitals and VHFðrÞ ¼
VextðrÞ þ VHðrÞ þ VHF

x ðrÞ with the Hartree potential VH

and a non-local exchange potential Vx
HF of the form of the

HF exchange operator.

In our representation Veff (Eq. 4) depends on a set of

variational parameters {l}, i.e., Veff = Veff({l}), where

{l} ) {bm,am}. Therefore

dVeff ¼
X

l

ðolVeffÞdl ð18Þ

and Eq. 17 can be reduced to a system of algebraic equa-

tions with respect to the variational parameters {l}, which

is divided into two parts:

1. for linear coefficients {bm}:

XMaux

n¼1

Amnbn ¼ hm ð19Þ

with

Amn ¼ 4
Xocc

i

Xvirt

a

h/ijfmj/aih/ajfnj/ii
ei � ea

ð20Þ

and

hm ¼ 4
Xocc

i

Xvirt

a

h/ijfmj/aih/ajðVHF � V0Þj/ii
ei � ea

ð21Þ

2. for non-linear auxiliary basis parameters {am}:

4
XMaux

m¼1

bm

Xocc

i

Xvirt

a

h/ij
ofm

oam
j/aih/ajFj/ii
ei � ea

¼ 0 ð22Þ

Eq. 19 is identical to that employed in [23] (Eq. 15) and

[17] (Eq. 33). It is worth also noting that Eq. 22 makes it

possible to carry out calculations with flexible basis sets for

Veff and is similar to Eq. 6 obtained by Yang and Wu [31].

3 A structure of the basis set xOEP equations

and its analysis based on the Fredholm alternative

In this section, we analyze the solvability of Eq. 19 from

the Fredholm alternative point of view and show how to

apply this alternative to construct a solution of the basis set

OEP equation. It is known and discussed in the literature

that the matrix representation of the OEP equation has a

unique solution only if the response matrix has no eigen-

values equal to zero and otherwise has none or infinitely

many solutions. Nevertheless, in our opinion, the Fredholm

alternative presents a natural and unified tool to analyze ill-

conditioned problems and their solvability conditions.

3.1 Operator form of the basis set OEP equation

and the Fredholm alternative

The xOEP equation (19) presents a system of linear

equations with respect to coefficients {bn} for a finite-

dimensional symmetric response matrix Amn, (Eq. 20),

m; n ¼ 1; 2; . . .;Maux: For further analysis, we rewrite this

system in an operator-vector form.

Ajui ¼ jhi ð23Þ

where

jui ¼
XMaux

n¼1

bnjfni ð24Þ

A is the corresponding response operator

A ¼
Xocc

i

Xvirt

a

j/i/aih/a/ij
ei � ea

ð25Þ

and

jhi ¼
Xocc

i

Xvirt

a

j/i/aih/ajðVHF � V0Þj/ii
ei � ea

ð26Þ
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It is useful to note that hm ¼ hfmjhi; Amn ¼ hfmjAjfni and the

expression hfmj/i/ai should be considered as

hfmj/i/ai ¼
Z

fmðrÞ/iðrÞ/aðrÞdr

¼
Z

/iðrÞfmðrÞ/aðrÞdr ¼ h/ijfmj/ai ð27Þ

A solvability condition of Eq. 23 can be treated by the

Fredholm alternative, which presents a general result from

the theory of equations. The alternative may be formulated

in the following particular form appropriate for our finite-

dimensional case (e.g., [41]):

1. either the homogeneous equation

Ajui ¼ 0 ð28Þ

has only the trivial solution jui ¼ 0 and then the non-

homogeneous equation

Ajui ¼ jhi ð29Þ

is uniquely solvable for any right-hand side jhi, or

2. Equation 28 has r [ 0 linearly independent solutions

hj, j = 1,2,...,r, and then Eq. 29 is solvable if and only

if hhjhji ¼ 0; j ¼ 1; 2; . . .; r: In addition, its solution is

not unique and its general solution is jui ¼ jupi þPr
j¼1 cjjhji; where cj are arbitrary constants and jupi is

a particular solution of (29).

Below we shall outline how the Fredholm alternative fits

the OEP theory.

3.2 Solvability of the finite basis set OEP equations

and the Fredholm alternative

Existence of non-trivial solutions of Eq. 28 implies that there

exist eigenvectors of the operator A with vanishing

eigenvalues. In other words the response matrix Amn is

non-invertible in the full space spanned by auxiliary basis

functions. Indeed, it has been mentioned repeatedly in the

literature (e.g., [12, 13, 15, 24, 25] and references therein)

that the basis set OEP method is ill-posed and may lead to

infinitely many multiplicative exchange potentials that yield

the same energy and density, although these potentials can

differ dramatically. Using the Fredholm alternative we

realize that such a non-uniqueness originates from arbitrar-

iness of the coefficients cj in the second part of the

alternative.

The full auxiliary space, Saux can be presented as a direct

sum of two subspaces which are invariant for a part of the

operator A (see Eq. 25) on the auxiliary space:

Saux ¼ S� S? ð30Þ

The first of them S with dim S = Ms is defined by eigen-

vectors of AfjhsigMs

1 with non-zero eigenvalues. The

eigenvectors fjh?s ig
Maux

Msþ1 corresponding to singular

eigenvalues (i.e., eigenvalues whose absolute values are

less than some positive threshold r) form the second so-

called null-subspace S\ with dim S\ = Maux-Ms.

A solvability condition means that the vectors of the

null-subspace must satisfy the orthogonality requirements

hh?s jhi ¼
Xocc

i

Xvirt

a

hh?s j/i/aih/ajðVHF � V0Þj/ii
ei � ea

¼ 0:

ð31Þ

In particular (Eq. 31) is fulfilled if

h/a/ijh?s i ¼ 0 ð32Þ

One can show that Eq. 32 is automatically fulfilled if all

products of occupied and virtual orbitals are linearly

independent of each other. Equation 32 means also that the

null-subspace is orthogonal to the space spanned by the

orbital products (S9). If we deal with a finite orbital space

then S9 is not complete and there exist infinitely many

vectors of the null-subspace. However, in the limit of a

complete orbital basis set we deal with the complete S9,

i.e., there are no any vectors orthogonal to S9 except a

constant function (fc) so that h/a/ijfci ¼ 0:

The S subspace should be considered as a projection of

the auxiliary space on the S9 space and according to the

first part of the Fredholm alternative Eq. 29 has a unique

solution on S:

PsAPsjui ¼ Psjhi ð33Þ

where Ps ¼
PMs

s¼1 jhsihhsj is the orthoprojector on the

subspace S, and jhsi are eigenvectors with non-zero

eigenvalues.

A solution of Eq. 29 on the subspace S can be obtained

as a result:

Psjui ¼
XMs

s¼1

csjhsi ¼ PsA
�1Psjhi ¼

XMs

s¼1

jhsi
1

xs
hhsjhi

ð34Þ

with

cs ¼
1

xs
hhsjhi ð35Þ

where xs are non-zero eigenvalues corresponding to a set

of eigenvectors {hs}, s ¼ 1; . . .;Ms; and Veff(r) can be

written in the form:

VeffðrÞ ¼ V0ðrÞ þ
XMs

s¼1

cshsðrÞ

¼ V0ðrÞ þ
XMaux

m¼1

XMs

s

csUsm

" #
fmðrÞ ð36Þ

and Usm are components of eigenvectors jhsi in a basis set

of auxiliary functions fm(r). It is clear that the old

Theor Chem Acc (2009) 124:365–376 369

123



expansion coefficients {bm} are related to new ones {cs} by

the expression:

bm ¼
XMs

s

csUsm; m ¼ 1; 2; . . .;Maux: ð37Þ

3.3 Singular value decomposition and optimization

for auxiliary basis sets

Above described technique termed as truncated singular

value decomposition (TSVD) was considered in literature

(e.g., [24–26]) as one of elements to remedy numerical

instabilities of the basis set OEP equation and construct its

stable solution. In this case practical calculations face the

important issue of finding objective criteria for discrimi-

nating zero and non-zero eigenvalues (see, e.g., [19]). We

solve this problem by analyzing the spectrum of eigen-

values of the response matrix Amn. In the spectrum, there is

usually an abrupt jump of several orders of magnitude if

Maux C Morb. From Table 1 (where eigenvalues of Amn for a

combination Morb/Maux = 6s/14s of the Be atom are listed)

one can see that starting with the 7th eigenvalue the structure

of the spectrum becomes steplike. It is important to note that

this specific feature does not depend on a type of an auxiliary

basis set. The large gap gives us confidence that all eigen-

vectors corresponding to eigenvalues before the gap must be

included into the S subspace. For example, according to

Table 1, we should take the first six vectors. The criterion

introduced in this way may appropriately be called a

gap-analysis. It is worth noting that a similar steplike

structure in the Amn spectrum was observed and analyzed in

Refs. [23, 25]. However, it was not exploited to divide the

full auxiliary space into two parts. The corresponding

regularization in these papers was achieved by adding in the

OEP minimization procedure of the so-called smoothing

term expressed in terms of a steplike structure [24, 26].

Nevertheless, as mentioned in the literature (e.g., [17,

26, 42]) the numerical problems of the OEP equation, in

general, cannot be solved by methods involving only

SVDs. In other words, these schemes, as well as the Tik-

honov regularization [23], may not yield a correct OEP

unless the auxiliary basis set strikes the right balance with

the orbital basis.

We investigated a possibility of a balancing scheme for

orbital and auxiliary basis sets via optimization of the

exponents for auxiliary functions. Let us clarify this point

considering the Be atom as an example. Both auxiliary and

orbital basis sets were constructed using s-type Gaussian

functions whose the exponents fp were chosen according to

an even-tempered prescription [43]

fp ¼ abp; p ¼ 1; 2; . . .;M ð38Þ

with M = Maux or M = Morb for auxiliary and orbital basis

sets respectively. In general, the parameters a and b must

be taken to be functions of M, the number of basis func-

tions, i.e., a = a(M) and b = b(M), if the Gaussian sets

defined by Eq. 38 are to become complete in the appro-

priate subspace as M??.

These parameters for orbital basis sets are tabulated for

different atoms and can be found in [43]. We performed a

simple reoptimization of the a and b parameters to find the

exponents for auxiliary basis sets. In our case values a(6)

= 0.542 448 and b(6) = 1.607 563 were obtained by

minimizing the OEP energy with Maux = 6. It is not time

consuming procedure as it should be done only for a small

auxiliary basis set. The a and b parameters for sizes larger

than Maux = 6 were determined using the recursions [44]:

a M½ � ¼ b M½ � � 1

b M � 1½ � � 1

� �a

a M � 1½ � ð39Þ

and

lnðb M½ �Þ ¼ M

M � 1

� �b

ln b M � 1½ � ð40Þ

with M = Maux and a = 0.3274 and b = -0.5230 values

were taken from [43]. In essence, the reoptimized a and b
parameters for auxiliary basis sets can be tabulated for all

atoms in a way similar to Ref. [43] and, thus, they may be

used with the standard basis sets.

It is known from the literature that one of important

steps of a balancing scheme is a removing the most diffuse

and some tightest s-type functions in the auxiliary basis set

Table 1 Eigenvalues (in a.u.) of the response matrix A for the dif-

ferent types of auxiliary functions and the element hhmjhi for the Be

atom

m fm =

exp(-amr2)

Non-opt

fm =

exp(-amr2)

Opt

fm ¼ 1�expð�amr2Þ
r

Non-opt

hhmjhi

1 -0.985E-01 -0.162E?00 -0.530E?02 -0.166E-01

2 -0.154E-01 -0.245E-01 -0.956E?00 0.386E-02

3 -0.797E-03 -0.127E-02 -0.161E?00 0.200E-02

4 -0.132E-03 -0.226E-03 -0.192E-01 -0.131E-02

5 -0.224E-04 -0.313E-04 -0.304E-02 -0.272E-03

6 -0.603E-05 -0.751E-05 -0.201E-03 0.301E-03

7 -0.154E-10 -0.842E-09 -0.125E-07 0.403E206

8 -0.132E-15 -0.118E-11 -0.846E-11 0.394E208

9 -0.384E-19 -0.220E-17 -0.204E-14 20.310E213

10 -0.451E-21 0.151E-21 -0.952E-15 0.943E213

11 -0.515E-23 0.300E-20 -0.236E-15 0.171E212

12 -0.161E-23 0.483E-20 0.563E-15 0.260E213

13 -0.586E-25 0.328E-19 0.668E-15 20.375E213

14 0.650E-24 0.290E-17 0.162E-14 20.129E212

First 6 rows shows vectors of S subspace and 7–14 rows shows

vectors of null-subspace

(Morb = 6, Maux = 14)

370 Theor Chem Acc (2009) 124:365–376

123



(see, e.g., [16] pp. 054102–054114). We would like to note

that a similar effect can be achieved by the reoptimization

described. A comparison of the exponents of an orbital and

auxiliary basis set consisting of 14s functions (see Table 2)

confirms our observation. The preliminary calculations

carried out for the Be atom showed the effectiveness of

such a procedure (see Sect. 4).

Thus, the construction of an auxiliary basis set balanced

for a given orbital one comprises the following steps:

1. Choose an orbital basis set and reoptimize its expo-

nents according to the mentioned recipe.

2. Carry out the TSVD regularization using the gap-

analysis described above.

This scheme, however, cannot prevent an uncontrolled

shift of the orbital energies even, if the reference potentials

with correct asymptotic are used. Imposing the so-called

HOMO condition improves the quality of the correspond-

ing OEP and partly solves this orbital energy problem.

According to this HOMO condition the orbital energy

eHOMO obtained from the one-particle equation (8), should

be identical to the expectation value h/HOMOjFHFj/HOMOi
obtained with the Fock operator, based on the OEP orbitals.

In Ref. [16], this condition was imposed on a reference

potential which is also expanded in the auxiliary basis set,

whereas in Refs. [12, 20, 25, 27]) it was enforced via a

Lagrange multiplier technique. In the last case the HOMO

constraints restrict the variational freedom of the optimi-

zation procedure.

Below we will consider how to account the HOMO

condition without involving restrictions into the variational

procedure. For this the contribution of singular eigenstates

of Amn to a local effective potential Veff(r) will be examined.

3.4 HOMO condition

We will exploit the freedom to choose appropriately the

component of the OEP solution Veff(r) in the null-subspace,

in order to ensure that certain conditions [45] of the exact

OEP are satisfied by the basis set OEP Veff(r), thus

improving the approximation. These conditions will be

applied to fix arbitrary coefficients appearing in the second

part of the Fredholm alternative. For example, a constraint

arises from the HOMO condition. Other restrictions, for

example, can be imposed using the Levy–Perdew virial

relation [46] or the correct asymptotic decay.

We shall show how the HOMO condition can be

imposed on the basis set OEP solution within the Fredholm

alternative. Unlike the existing methods which seek the

solution on the subspace S subject to the HOMO constraint,

we use for this purpose a solution from the null-subspace

S\ and, therefore, do not involve additional restrictions

into the variational procedure.

Let a potential VðrÞ ¼
PMs

s¼1 cshsðrÞ be a solution of the

OEP equation (23) and h\(r) be an arbitrary function

belonging to the null-subspace S\. Then V(r) ? h\(r)

represent another solution since Ajh?i ¼ 0 and thus, we

have an infinite number of such potentials. We may choose

an effective potential in the form

VeffðrÞ ¼ V0ðrÞ þ
XMs

s¼1

cshsðrÞ þ c?Msþ1h
?ðrÞ ð41Þ

As mentioned the coefficients cs are found via Eq. 33

whereas the unknown coefficient cM_s?1
\ will be determined

with the help of the HOMO condition, which can be written

as:

h/HOMOjVeff j/HOMOi ¼ h/HOMOjVHFj/HOMOi ð42Þ

Substituting Eq. 41 in Eq. 42 we arrive at the relation

c?Msþ1

¼ h/
HOMOjVHFj/HOMOi � h/HOMOjV0j/HOMOi �

PMs

s¼1 csh/HOMOjhsj/HOMOi
h/HOMOjh?j/HOMOi

ð43Þ
After determining c?Msþ1 the one-particle Schrödinger

equation (8) is solved with Veff(r) (Eq. 41) and the proce-

dure has to be repeated until we find self-consistency.

Certainly, we have infinitely many of the potentials

(Eq. 41) and all of them will satisfy the HOMO condition

by construction. In addition, it is clear that the proposed

HOMO procedure is applicable, if the denominator in

(Eq. 43) is not equal to zero. However, it is worth noting

that the vector j/HOMOi belongs to the null-subspace of the

A operator (Eq. 25). Consequently, it has a non-zero pro-

jection on this subspace. Therefore, in our implementation

we use the only choice for h\:

Table 2 Beryllium atom: exponents fp of even-tempered orbital and

auxiliary basis sets of 14s Gaussians

p Orbital Auxiliary

1 0.04529 0.61780

2 0.11723 0.83794

3 0.30339 1.13652

4 0.78517 1.54149

5 2.03205 2.09076

6 5.25900 2.83575

7 13.61050 3.84619

8 35.22430 5.21669

9 91.16150 7.07553

10 235.92900 9.59671

11 610.59100 13.01627

12 1,580.23000 17.65429

13 4,089.67000 23.94495

14 10,584.20000 32.47713

Theor Chem Acc (2009) 124:365–376 371

123



jh?i ¼
XMaux

s¼Msþ1

jh?s ihh
?
s j/

HOMOi ð44Þ

Thus the OEP is presented as a linear combination of Ms

functions belonging to the subspace S and the only function

(44) from the null-subspace S\.

4 Algorithm and numerical results

The analysis described above leads to the numerical pro-

cedure for constructing effective potentials. In summary,

the procedure is the following:

1. Solve the KS equation (8) with the reference potential

V0(r) (Eq. 5), whose variational parameters d and C are

determined by minimizing the OEP energy.

2. Pick a set of at least Morb ? 1 auxiliary functions {fm}

and evaluate the matrix elements hvpjfmjvqi:
3. Using the KS orbitals construct and diagonalize

response matrix Amn to get its eigenvalues {x} and

eigenvectors {h}.

4. Using the gap-analysis select Ms eigenvectors of Amn

forming the S subspace and evaluate the coefficients

cs; s ¼ 1; 2; . . .;Ms according to Eq. 35.

5. Calculate the coefficient cMsþ1 according to Eq. 43 and

solve the KS equation with the potential of Eq. 41

keeping the reference potential fixed.

6. Evaluate the total energy using a new set of the KS

orbitals.

7. Return after step 6 to step 3 using the current KS

orbitals and repeat steps 3–6 until convergence is

achieved.

Regarding the computational efficiency of our implemen-

tation, it should be noted that matrix elements of Veff(r)

demand analytical evaluation of one-particle integrals only.

The basis set OEP calculations for the Be atom and

small diatomics H2, HeH, LiH, BeH and BH were carried

out to examine numerical stability and to evaluate the

performance of the proposed procedure.

It is well known that the choice of the finite basis sets is

crucial for the success of any ab initio calculations.

Therefore before comparing the numerical results obtained

here with the literature data we consider the specific fea-

tures of orbital and auxiliary basis functions employed in

our implementation and present illustrative calculations of

the response matrix for the Be atom, which has been well

studied for the OEP problem from various aspects [11, 13,

16, 27]. In addition, we discuss also how the method in

question can be used when the OEP is split as a sum of two

or more terms, for example the Hartree potential and the

exchange potential.

4.1 Orbital and auxiliary functions for the Be atom

For the Be atom we used orbital basis sets of s-type

Gaussian functions

vpðrÞ ¼ expð�fpr2Þ; ð45Þ

where the orbital exponents fp were chosen according to an

optimal even-tempered prescription [43].

As far as auxiliary basis functions are concerned, it

should be stressed that the basis functions for orbitals and

for the potential, in general, have to cover different func-

tional subspaces as they have to satisfy different criteria

(see, e.g., [14]). Indeed, the OEP is not an integrable

function, because it falls off as � 1
r asymptotically. It is

therefore impossible to expand it directly in terms of the

traditional orbital basis sets. At this stage we will consider

two types of auxiliary functions. The first uses the orbital

basis set itself, i.e.,

fmðrÞ ¼ expð�fmr2Þ ð46Þ

The second choice of auxiliary functions is different from

the traditional one and follows the choice of the reference

potential V0(r). In other words we use auxiliary basis

functions expressed in terms of the external potential. For

atoms auxiliary functions are:

fmðrÞ ¼ ðN � 1Þ 1� expð�fmr2Þ
r

ð47Þ

The parameters fm for the potential functions (46) and (47)

were determined by the prescription (38) like orbital

functions. In addition, auxiliary basis sets of the different

quality were constructed. The first type specified as non-

optimal bases were generated with the exponents fm of an

orbital basis set. For the second type of auxiliary bases

specified as optimal bases the parameters fm were reop-

timized in accordance with Sect. 3.3.

Using the basis sets described and the reference poten-

tial V0(r) (Eq. 5), which for atoms takes the form

V0ðrÞ ¼ �
Z

r
þ ðN � 1ÞC 1� expð�drÞ

r
; ð48Þ

the Kohn–Sham equation (8) was solved and the response

matrix Amn was constructed for two types of auxiliary

functions (46) (non-optimal and optimal) and (Eq. 47)

(non-optimal). Values d = 1.974140 a.u and C = 0.917234

a.u. were determined by minimizing EOEP. Diagonaliza-

tion of this matrix was performed to check the ill-posed-

ness of this matrix. The corresponding results obtained

with orbital basis set (Morb = 6) and auxiliary basis set

(Maux = 14) are given in Table 1. As expected, the matrix

Amn is pathologically non-invertible in the full space

spanned by both functions (46) and functions (47) forming

auxiliary basis sets since it has many practically zero
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eigenvalues. In addition, as mentioned, the singular

eigenvalues as well as the element hhjhji show a gap of

several orders of magnitude from values whose eigen-

vectors should be included in the S subspace. The number

of these eigenvectors determines the dimension Ms. In our

case Ms = 6.

4.2 Splitting of the effective potential and auxiliary

functions

The previous sections dealt with the problem how to

expand the whole OEP in the basis set. However, in the

traditional OEP practice Veff is split as a sum of some

terms:

VeffðrÞ ¼ VextðrÞ þ VHðrÞ þ VxðrÞ ð49Þ

with VextðrÞ ¼ � Z
r ; VHðrÞ ¼

R q0ðr0Þ
jr�r0j dr0 is the Hartree

potential and VxðrÞ is a local exchange potential, which is

expanded in a set of auxiliary basis functions.

In this subsection we consider how the method in

question can be applied to the problem (Eq. 49). In addi-

tion, we shall consider atoms although implementation for

molecules is straightforward. In our implementation a fixed

electronic density q0(r) in VH (r) was obtained with our

reference potential (Eq. 5). Unlike Veff, Vx is finite at the

nucleus, so auxiliary functions for Vx, in general, are dif-

ferent from that for Veff. For example, functions (47)

employed for the whole OEP cannot be used to expand Vx,

because

lim
r!0

1� expð�fmr2Þ
r

¼ 0 ð50Þ

whereas limr?0 Vx(r) = 0. To ensure that the potential Vx

has the correct asymptotic behavior, one may choose to

search the local potential in the form:

VxðrÞ ¼ V0xðrÞ þ
XMaux

m¼1

bmfmðrÞ ð51Þ

with Gaussians fm = exp(-fmr2) and a reference exchange

potential V0x(r) which in the spirit of V0(r) takes the form

V0xðrÞ ¼ ðN � 1ÞCx
1� expð�dxrÞ

r
; ð52Þ

The KS equations with the potential V = Vext(r) ? VH

(r) ? V0x (r) were solved to determine the variational

parameters Cx and dx in Eq. 52 by minimizing EOEP and

subsequently we fix V0x(r). For the Be atom they are

Cx = -0.267611 a.u. and dx = 3.346702 a.u. Then the

coefficients bm are determined in accordance with the

algorithm.

Thus the algorithm of constructing Vx(r) is similar to

that for the whole effective potential.

4.3 Comparison with other methods for the Be atom

Below we will use potentials with only optimal exponents

of auxiliary functions.

For the Be atom calculations were carried out with both

the effective potential (Eq. 4) and the splintered potential

(Eq. 49). An influence of reoptimization of auxiliary basis

sets on a smoothness of the potential is demonstrated in

Fig. 1 where the exchange potentials of Be obtained with

non-optimal and optimal auxiliary basis sets are shown. We

used 6s functions for an orbital basis and 14s functions for

an auxiliary basis set (6s/14s combination). The dotted

potential corresponds to non-optimal auxiliary functions

and the SVD filtering. We observe a distorted tail near a

nucleus, i.e., this TSVD regularization is not sufficient to

ensure a physically meaningful solution for the OEP in

general. Whereas this regularization in conjunction with

the reoptimization procedure leads to a correct behavior

(solid line). Figure 2 presents the exchange potentials of Be

as a function of the distance from the nucleus. These

potentials were determined according to Eq. 51. The dotted

line is our result by using 6s gaussians (Eq. 45) for orbitals

and an auxiliary basis set of 6s optimal functions. The

dashed and solid lines correspond to 14s and 18s auxiliary

functions respectively. Unlike Veff, we did not use the

HOMO condition for Vx. One can see that our calculated Vx

potentials have a smooth behavior near the nuclei and are

visually indistinguishable. They produce the total energy E

= -14.535 178 hartree which coincides practically with

that obtained with the whole OEP (see Table 3).

A comparison in the behavior of the reference potential

(Eq. 48) and the Veff potentials (Eq. 4) with HOMO con-

ditions obtained for different combinations (Morb/Maux) )

Fig. 1 Exchange potentials of the beryllium atom obtained using

even tempered auxiliary basis sets with non-optimal (dotted line) and

optimal (solid line) exponents
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(6)/(14), (14)/(14) and (14)/(6) is given in Fig. 3. All the

effective potentials were computed with auxiliary functions

(47). One can see that our reference potential (Eq. 48) can

be considered as a good approximation in some average

sense to a more accurate effective potential, missing,

however, the peek due to the shell structure (at about 1 a.u.)

and correct values of orbital energies. Although it should

be noted that the effective potentials in our implementation

show a smoothed intershell peek, compared to the

exchange potentials presented in Fig. 2. It can be partly

explained by including the external potential from scratch

to our effective potentials which smooths slightly the peek.

The results listed in Table 3 were obtained with the

second type of optimal auxiliary functions (47) of different

sizes and without the HOMO condition. One can see that

dimension (Ms) of the subspace S is determined by a chosen

orbital basis set (Morb = 6) and does not depend on a size of

an auxiliary basis set. In addition the OEP energy does not

depend practically on the number of auxiliary functions.

Table 4 shows convergence of the OEP energy and

differences between OEP and HF energies as a function of

an orbital basis set size. The auxiliary basis set of 22

functions (46) and (47) was used for different sizes of

orbital basis sets (Morb = 6, 10, 14 and 22). For both types

of auxiliary functions we observe that the difference

EOEP - EHF converges towards the value 0.591 mhartrees,

which can be regarded as close to the exact one [16]. In

addition, our total OEP energies are in good agreement

with the corresponding literature data (see, e.g., the values

in footnote taken from [42]).

The energies of occupied orbitals and lower unoccupied

orbitals for Be obtained with HF and various local poten-

tials are given in Table 5. The results show that our scheme

and the known in literature ELP, SCELP and Yang–Wu

OEP methods yield very similar orbital energies. Here it

should be stressed that the ELP, SCELP and Yang–Wu

OEP spectra are shifted to have the same HOMO energies

as Hartree–Fock, whereas our values are obtained directly

from a solution of the KS and xOEP equations.

4.4 Implementation for molecules

For the molecules under consideration, unlike the tradi-

tional atom-centered basis sets, we used orbital basis

functions distributed along the molecular Z axis:

vp ¼ expf�fp½x2 þ y2 þ ðz� ZpÞ2�g; p ¼ 1; 2; . . .;Morb

ð53Þ

The orbital exponents fp and the positions Zp were deter-

mined by invoking the OEP variational principle. Optimi-

zation equation (15) were used to construct an effective

computational algorithm for their determination. More

information about the variationally optimized basis sets can

be found in Refs. [39, 40].

Fig. 2 The exchange potentials of Be obtained with an orbital basis

set of 6s functions and different auxiliary basis sets

Table 3 Total energy (hartrees) of the Be atom obtained with an

orbital basis set of 6s functions and the different number of auxiliary

basis functions fm ¼ 1�expð�amr2Þ
r (energy difference in mhartrees)

Maux Ms ? 1 EOEP EOEP - EHFa

10 7 -14.535 173 0.028

14 7 -14.535 174 0.027

18 7 -14.535 175 0.026

22 7 -14.535 178 0.023

a The Hartree–Fock energy EHF = -14.535 201 hartrees was

obtained with the same orbital basis set as for the OEP method

ef
f

Fig. 3 The reference potential V0(r) (solid line) and the effective

potentials of Be, computed with HOMO condition for different

combinations (Morb/Maux): (6s/14s), potential 1; (14s/14s), potential 2

and (14s/6s), potential 3. Auxiliary functions fm ¼ 1�expð�fmr2Þ
r are

used
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To clarify our modifications for auxiliary basis functions

(47) it is worth noting that orbital products {/i/a} form a

suitable basis set to expand a local potential [11, 20]. Let us

suppose that for a diatomic molecule A–B an occupied

molecular orbital is presented by a linear combination of

atomic functions centered on the A nucleus, whereas an

unoccupied orbital is located on the B nucleus (the tradi-

tional basis sets are atom-centered ones). The orbital

product can then be expressed in terms of atomic basis

functions:

/iðrÞ/aðrÞ ¼
X

p;q

CipCaq exp �fp½x2 þ y2 þ ðz� ZAÞ2�
n o

� exp �fq½x2 þ y2 þ ðz� ZBÞ2�
n o

ð54Þ

Using the Gaussian product theorem we have

/iðrÞ/aðrÞ ¼
X

p;q

CipCaqKpq

� exp �fpq½x2 þ y2 þ ðz� ZpqÞ2�
n o

ð55Þ

where

fpq ¼ fp þ fq; Kpq ¼ exp � fpfq

fpq

ðZA � ZBÞ2
� �

ð56Þ

and new positions Zpq are determined by the relation

Zpq ¼
fpZA þ fqZB

fpq

ð57Þ

In other words, because of Eq. 57 we deal with an

expansion in terms of Gaussians, whose centers Zpq, in

general, do not coincide with the nuclei. Therefore, for

molecules we employed the following modified auxiliary

functions with distributed Gaussians:

fmðrÞ ¼
N � 1

Z

X

k

Zk
1� exp½�fmðr� <mÞ2�

jr� Rkj
ð58Þ

In addition, orbital exponents fm and the corresponding

positions <m can be determined by minimizing the OEP

energy or using the distributed models proposed in [47, 48].

The total OEP energies of simple diatomics in a com-

parison with the HF energies are presented in Table 6. The

energies were computed with variationally optimized orbital

basis sets of 18s Gaussians.Auxiliary basis sets contained

14, 18 and 22 functions fm (Eq. 58). The corresponding

gaussian functions in (Eq. 58) were distributed along the

molecular axis with the same exponents fm and positions<m

as the orbital basis set functions. The parameters of the basis

sets are available from the author (V.N.G.) on request.

It is known [15] that the exact exchange-only OEP

energy is above HF except closed-shell two-electron sys-

tems (H2 in our case) for which EOEP = EHF. Our results

for the molecules under consideration are in agreement

with this statement. In addition, we observe that the dif-

ference EOEP-EHF for open-shell molecules HeH and BeH

is larger than for closed-shell systems: LiH and BH (cf.

HeH (0.31 mhartrees) with LiH (0.03 mhartrees) and BeH

(0.743 mhartrees) with BH (0.716 mhartrees).

This can be explained by using the same local potential

Veff for all electrons, whereas the restricted open-shell HF

method deals with different Fock operators for spin-up and

spin-down electrons.

To estimate an accuracy of the computed OEP and HF

energies and the quality of basis sets employed, we present

the HF limits data obtained with the numerical HF method

[50]: H2, R = 1.4 bohr, EHF = -1.133 629 57 hartrees;

HeH, R = 1.5 bohr, EHF = -3.220 315 12 hartrees; LiH,

R = 3.015 bohr, EHF = -7.987 352 14 hartrees; BeH,

Table 4 Beryllium atom: convergence of the OEP energy (hartrees)

and differences between OEP and HF energies (mhartrees) as a

function of the orbital basis set size

Morb Ms ? 1 EOEPa EOEP - EHF eOEP
HOMO eHF

HOMO

fm = exp(-am r2)

6 7 -14.535 182 0.019 -0.298 354 -0.298 636

10 11 -14.571 530 0.208 -0.309 399 -0.308 872

14 11 -14.572 366 0.585 -0.309 634 -0.309 258

22 12 -14.572 432 0.591 -0.309 573 -0.309 269

fm ¼ 1�expð�amr2Þ
r

6 7 -14.535 178 0.023 -0.298 606 -0.298 636

10 11 -14.571 530 0.208 -0.309 472 -0.308 872

14 15 -14.572 427 0.524 -0.309 533 -0.309 258

22 19 -14.572 435 0.588 -0.309 563 -0.309 269

The 5th and 6th columns display HOMO orbital energies (hartrees)

computed with the present OEP implementations and the HF method. The

largest auxiliary basis set of Maux = 22 and optimal even-tempered

exponents are used
a Other results (taken from [42]; a large UGBS basis set was used): (1)

Effective localized potential (ELP) method (aux = orb) E = -14.572 280

hartrees, (2) Yang–Wu OEP method (aux = orb) E = -14.572 426

hartrees, (3) Numerical OEP method E = -14.572 433 hartrees

Table 5 Orbital energies (in hartrees) of the Be atom calculated with

Hartree–Fock and various local potentials

Orbital HF ourOEP Yang-

Wu OEP

ELP SCELP

1s -4.732 67 -4.125 26 -4.127 96 -4.117 89 -4.108 20

2s -0.309 27 -0.309 56 -0.309 27 -0.309 27 -0.309 27

3s 0.077 18 -0.076 43 -0.080 72 -0.074 11 -0.078 67

4s 0.362 93 0.155 74 0.150 13 0.158 15 0.156 07

The ELP, SCELP and Yang–Wu OEP spectra are shifted to have the

same HOMO orbital energies as Hartree–Fock [29]. Orbital/auxiliary

(22s)/(22s) basis sets are used
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R = 2.5 bohr, EHF = -15.153 182 34 hartrees and BH,

R = 2.3289 bohr, EHF = -25.131 639 16 hartrees.

5 Conclusions

Using the Fredholm alternative we have analyzed a struc-

ture and a solvability condition of the basis set xOEP

equations. It has been shown that a solution can be con-

structed as a sum of a unique solution on the subspace which

is a projection of the full auxiliary space on the space

spanned by the orbital products and a solution on the null-

subspace. Non-uniqueness of a solution has been exploited

to obtain a local effective potential Veff(r) that satisfies the

HOMO condition without restricting the variational free-

dom of the optimization procedure. A simple reoptimization

of the basis function exponents together with the TSVD

regularization has been examined to construct a balancing

scheme for orbital and auxiliary basis sets.

A new form of auxiliary functions expressed in terms of

the external potential has been introduced. These functions

preserve a symmetry of the external potential and provide a

correct asymptotic behavior. The corresponding calcula-

tions of the total OEP energies and orbital energies have

shown a proper performance of the proposed basis set OEP

implementation.
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OEP/auxiliary basis

H2
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